Vector-valued Optimal Lipschitz Extensions

نویسنده

  • SCOTT SHEFFIELD
چکیده

Consider a bounded open set U ⊂ Rn and a Lipschitz function g : ∂U → Rm. Does this function always have a canonical optimal Lipschitz extension to all of U? We propose a notion of optimal Lipschitz extension and address existence and uniqueness in some special cases. In the case n = m = 2, we show that smooth solutions have two phases: in one they are conformal and in the other they are variants of infinity harmonic functions called infinity harmonic fans. We also prove existence and uniqueness for the extension problem on finite graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

Some Properties of Vector-valued Lipschitz Algebras

‎ Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.

متن کامل

Efficient Lipschitz Extensions for High-Dimensional Graph Statistics and Node Private Degree Distributions

Lipschitz extensions were recently proposed as a tool for designing node differentially private algorithms. However, efficiently computable Lipschitz extensions were known only for 1-dimensional functions (that is, functions that output a single real value). In this paper, we study efficiently computable Lipschitz extensions for multi-dimensional (that is, vector-valued) functions on graphs. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010